363 research outputs found

    Piezoelectric mimicry of flexoelectricity

    Get PDF
    The origin of "giant" flexoelectricity, orders of magnitude larger than theoretically predicted, yet frequently observed, is under intense scrutiny. There is mounting evidence correlating giant flexoelectric-like effects with parasitic piezoelectricity, but it is not clear how piezoelectricity (polarization generated by strain) manages to imitate flexoelectricity (polarization generated by strain gradient) in typical beam-bending experiments, since in a bent beam the net strain is zero. In addition, and contrary to flexoelectricity, piezoelectricity changes sign under space inversion, and this criterion should be able to distinguish the two effects and yet "giant" flexoelectricity is insensitive to space inversion, seemingly contradicting a piezoelectric origin. Here we show that, if a piezoelectric material has its piezoelectric coefficient be asymmetrically distributed across the sample, it will generate a bending-induced polarization impossible to distinguish from true flexoelectricity even by inverting the sample. The effective flexoelectric coefficient caused by piezoelectricity is functionally identical to, and often larger than, intrinsic flexoelectricity: the calculations show that, for standard perovskite ferroelectrics, even a tiny gradient of piezoelectricity (1% variation of piezoelectric coefficient across 1 mm) is sufficient to yield a giant effective flexoelectric coefficient of 1 μ\muC/m, three orders of magnitude larger than the intrinsic expectation value

    Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions

    Get PDF
    We present a family of phase-field models for fracture in piezoelectric and ferroelectric materials. These models couple a variational formulation of brittle fracture with, respectively, (1) the linear theory of piezoelectricity, and (2) a Ginzburg–Landau model of the ferroelectric microstructure to address the full complexity of the fracture phenomenon in these materials. In these models, both the cracks and the ferroelectric domain walls are represented in a diffuse way by phase-fields. The main challenge addressed here is encoding various electromechanical crack models (introduced as crack-face boundary conditions in sharp models) into the phase-field framework. The proposed models are verified through comparisons with the corresponding sharp-crack models. We also perform two dimensional finite element simulations to demonstrate the effect of the different crack-face conditions, the electromechanical loading and the media filling the crack gap on the crack propagation and the microstructure evolution. Salient features of the results are compared with experiments

    Phase-field simulation of anisotropic crack propagation in ferroelectric single crystals: effect of microstructure on the fracture process

    Get PDF
    Crack propagation during the indentation test of a ferroelectric single crystal is simulated using a phase- eld model. This model is based on variational formulations of brittle crack propagation and domain evolution in ferroelectric materials. Due to the high compressive stresses near the indenter contact faces, a modi ed regularized formulation of the variational brittle fracture is coupled with the material model to prevent crack formation and interpenetration in the compressed regions. The simulation results show that the radial cracks perpendicular to the poling direction of the material propagate faster than the parallel ones, which is in agreement with experimental observations. This anisotropy in the crack propagation is due to interactions between the material microstructure and the radial cracks, as captured by the phase- eld simulation. Crack propagation during the indentation test of a ferroelectric single crystal is simulated using a phase-eld model. This model is based on variational formulations of brittle crack propagation and domain evolution in ferroelectric materials. Due to the high compressive stresses near the indenter contact faces, a modied regularized formulation of the variational brittle fracture is coupled with the material model to prevent crack formation and interpenetration in the compressed regions. The simulation results show that the radial cracks perpendicular to the poling direction of the material propagate faster than the parallel ones, which is in agreement with experimental observations. This anisotropy in the crack propagation is due to interactions between the material microstructure and the radial cracks, as captured by the phase-eld simulation

    Phase-field modeling of fracture in ferroelectric materials

    Get PDF
    This paper presents a family of phase-field models for the coupled simulation of the microstructure formation and evolution, and the nucleation and propagation of cracks in single and polycrystalline ferroelectric materials. The first objective is to introduce a phase-field model for ferroelectric single crystals. The model naturally couples two existing energetic phase-field approaches for brittle fracture and ferroelectric domain formation and evolution. Simulations show the interactions between the microstructure and the crack under mechanical and electromechanical loadings. Another objective of this paper is to encode different crack face boundary conditions into the phase-field framework since these conditions strongly affect the fracture behavior of ferroelectrics. The smeared imposition of these conditions are discussed and the results are compared with that of sharp crack models to validate the proposed approaches. Simulations show the effects of different conditions and electromechanical loadings on the crack propagation. In a third step, the model is modified by introducing a crack non-interpenetration condition in the variational approach to fracture accounting for the asymmetric behavior in tension and compression. The modified model makes it possible to explain anisotropic crack growth in ferroelectrics under the Vickers indentation loading. This model is also employed for the fracture analysis of multilayer ferroelectric actuators, which shows the potential of the model for future applications. The coupled phase-field model is also extended to polycrystals by introducing realistic polycrystalline microstructures in the model. Inter- and trans-granular crack propagation modes are observed in the simulations. Finally, and for completeness, the phase-field theory is extended to the simulation of the propagation of conducting cracks under purely electrical loading and to the three-dimensional simulation of crack propagation in ferroelectric single crystals. Salient features of the crack propagation phenomenon predicted by the simulations of this paper are directly compared with experimental observations

    Numerical simulation of intergranular and transgranular crack propagation in ferroelectric polycrystals

    Get PDF
    We present a phase-field model to simulate intergranular and transgranular crack propagation in ferroelectric polycrystals. The proposed model couples three phase-fields describing (1) the polycrystalline structure, (2) the location of the cracks, and (3) the ferroelectric domain microstructure. Different polycrystalline microstructures are obtained from computer simulations of grain growth. Then, a phase-field model for fracture in ferroelectric single-crystals is extended to polycrystals by incorporating the differential fracture toughness of the bulk and the grain boundaries, and the different crystal orientations of the grains. Our simulation results show intergranular crack propagation in fine-grain microstructures, while transgranular crack propagation is observed in coarse grains. Crack deflection is shown as the main toughening mechanism in the fine-grain structure. Due to the ferroelectric domain switching mechanism, noticeable fracture toughness enhancement is also obtained for transgranular crack propagation. These observations agree with experiment

    Constructive and destructive interplay between piezoelectricity and flexoelectricity in flexural sensors and actuators

    Get PDF
    Flexoelectricity is an electromechanical effect coupling polarization to strain gradients. It fundamentally differs from piezoelectricity because of its size-dependence and symmetry. Flexoelectricity is generally perceived as a small effect noticeable only at the nanoscale. Since ferroelectric ceramics have a particularly high flexoelectric coefficient, however, it may play a significant role as piezoelectric transducers shrink to the submicrometer scale. We examine this issue with a continuum model self-consistently treating piezo- and flexoelectricity. We show that in piezoelectric device configurations that induce strain gradients and at small but technologically relevant scales, the electromechanical coupling may be dominated by flexoelectricity. More importantly, depending on the device design flexoelectricity may enhance or reduce the effective piezoelectric effect. Focusing on bimorph configurations, we show that configurations that are equivalent at large scales exhibit dramatically different behavior for thicknesses below 100¿nm for typical piezoelectric materials. Our results suggest flexoelectric-aware designs for small-scale piezoelectric bimorph transducers

    Conducting crack propagation driven by electric fields in ferroelectric ceramics

    Get PDF
    Ferroelectric ceramics are susceptible to fracture under high electric fields, which are commonly generated in the vicinity of electrodes or conducting layers. In the present work, we extend a phase-field model of fracture in ferroelectric single crystals to the simulation of the propagation of conducting cracks under purely electrical loading. This is done by introducing the electrical enthalpy of a diffuse conducting layer into the phase-field formulation. Simulation results show oblique crack propagation and crack branching from a conducting notch, forming a tree-like crack pattern in a ferroelectric sample under positive and negative electric fields. Microstructure evolution indicates the formation of tail-to-tail and head-to-head 90° domains, which results in charge accumulation around the crack. The charge accumulation, in turn, induces a high electric field and hence a high electrostatic energy, further driving the conducting crack. Salient features of the results are compared with experiments

    Three-dimensional simulation of crack propagation in ferroelectric polycrystals: Effect of combined toughening mechanisms

    Get PDF
    We simulate the fracture processes of ferroelectric polycrystals in three dimensions using a phase-field model. In this model, the grain boundaries, cracks and ferroelectric domain walls are represented in a diffuse way by three phase-fields. We thereby avoid the difficulty of tracking the interfaces in three dimensions. The resulting model can capture complex interactions between the crack and the polycrystalline and ferroelectric domain microstructures. The simulation results show the effect of the microstructures on the fracture response of the material. Crack deflection, crack bridging, crack branching and ferroelastic domain switching are observed to act as the main fracture toughening mechanisms in ferroelectric polycrystals. Our fully 3-D simulations illustrate how the combination of these mechanisms enhances the fracture toughness of the material, and pave the way for further systematic studies, including fracture homogenization

    Pancreatic Cancer: Current Concepts in Invasion and Metastasis

    Get PDF

    Crack initiation patterns at electrode edges in multilayer ferroelectric actuators

    Get PDF
    In multilayer ferroelectric actuators, electrode edges are the main source of fracture due to the generation of non-uniform electric fields in their vicinity. The electric fields, in turn, induce incompatible strain fields and hence concentrated stresses, which may cause the ceramic to crack. In this paper, the crack initiation from the electrode edges is simulated using a phase-field model. This model is based on variational formulations of brittle crack propagation and domain evolution in ferroelectric materials. The simulation results show different crack initiation patterns depending on the bonding conditions between the ceramic and electrode layers. Three extreme conditions are considered, which are fully cofired, partially cofired, and separated layers. The crack initiation patterns can be either delimitation along the electrode–ceramic interface or oblique cracking from the electrode into the material. The calculations suggest a mechanism explaining the experimentally observed crack branches near the electrode edges. The effects of the ceramic layer thickness and length of the internal electrode on the crack initiation are also evaluated
    • …
    corecore